Expert Clinic - Revamp the network to cope with explosion in mobile kit

With Tony Lock, originally published on The Register


Published/updated: October 2011

Ethernet was originally conceived of as being used by networks consisting of limited numbers of devices, each painstakingly connected and configured. When mainstream business adopted Ethernet, only relatively small numbers of devices, nearly all of them computers of one sort or another, were connected utilising the original IPv4 addressing scheme. This was designed to handle what at the time was considered to be “vast” numbers of connected devices, but today it is clear that such optimism was misplaced.

With the numbers of PCs, laptops and now mobile devices exploding, the pressure on Ethernet networks to provide each device with connectivity has the potential to seriously impact the addressing scheme. The use of solutions such as one-to-many Network Address Translation (NAT) allows large numbers of private IP addresses to be hidden behind one or a small range of public IP addresses, but at the cost of added management complexity and security. So how will networks develop to allow the number of devices connected to continue growing rapidly?

Of equal importance is the question of how can the bandwidth required by a central Ethernet be calculated, managed and, if need be, “rationed” with hugely escalating pressures on usage? To help cater for these demands it is clear that there may be major network architectural modifications to be made. Some of these, such as network ‘flattening’ where aggregation layers of the network are removed, offer the potential to gain major benefits in terms of quality of service, predictability and manageability. Other changes, most notably the migration from IPv4 to IPv6, provide the means to meet the demand for ever more addresses for devices and to provide new ways to manage service quality.

New pools of IPv4 addresses are diminishing day by day as the rush of device connectivity, servers, storage, desktops, laptops and mobile systems continues at a frantic pace. The transition from IPv4 to IPv6 is likely to prove to be taxing. There is little doubt that IPv6 will grow in popularity, as it is already doing so in certain geographies, most notably Japan, the only question is when. IPv4 and IPv6 are likely to be utilised side by side for many years adding another layer of complexity to network management, an area hardly free of such challenges.

Meanwhile the rapid adoption of “virtualisation” is adding further complexity to the mix. The absence of good practices and established processes to help migration projects is inhibiting progress and propagating the deployment of a mix of solutions to extend the usage of the existing address range.

Security and management will also need to be reappraised as mobile connectivity grows in enterprises, especially as the range of devices allowed to connect to corporate systems expands. Many organisations already recognise that their network monitoring and management tools need to be upgraded and this recognition will grow further as networks become more stressed.

The importance of the monitoring and management of networks are once again, after a lull of a decade or more, growing in visibility as a major factor in service quality. As device connectivity grows, as flexible IT systems take off and as organisations grow their use of external systems and devices linking to the core, the management of resource demand becomes vital to ensure network resources are utilised according to business goals.

CLICK HERE TO VIEW ORIGINAL PUBLISHED ON







Featured Content